7 resultados para LEAD PIPES

em Helda - Digital Repository of University of Helsinki


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In bacteria resistance to heavy metals is mainly achieved through active efflux, but also sequestration with proteins or as insoluble compounds is used. Although numerous studies have dealt with zinc, cadmium and lead resistance mechanisms in bacteria, it has still remained unclear how different transporters are integrated into an effective homeostasis/resistance network and whether specific mechanisms for lead sequestration exist. Furthermore, since metals are toxic not only to bacteria but to higher organisms as well, it is important to be able to estimate possible biological effects of heavy metals in the environment. This could be done by determining the bioavailable amount of the metals in the environment with bacterial bioreporters. That is, one can employ bacteria that respond to metal contamination by a measurable signal to assess the property of metals to cross biological membranes and to cause harmful effects in a possibly polluted environment. In this thesis a new lead resistance mechanism is described, interplay between CBA transporters and P-type ATPases in zinc and cadmium resistance is presented and finally the acquired knowledge is used to construct bacterial bioreporters for heavy metals with increased sensitivity and specificity. The new lead resistance model employs a P-type ATPase that removes Pb2+ ions from the cytoplasm and a phosphatase that produces inorganic phosphate for lead sequestration in the periplasm. This was the first study where the molecular mechanism of lead sequestration has been described. Characterization of two P-type ATPases and two CBA transporters showed that resistance mechanisms for Zn2+ and Cd2+ are somewhat different than for Pb2+ as these metals cannot be sequestered as insoluble compounds as easily. Resistance to Zn2+ was conferred merely by the CBA transporter that could export both cytoplasmic and periplasmic ions; whereas, full resistance to Cd2+ required interplay of a P-type ATPase that exported cytoplasmic ions to periplasm and a CBA transporter that further exported periplasmic ions to the outside. The knowledge on functionality of the transporters and metal-inducible promoters was exploited in bioreporter technology. A transporter-deficient bioreporter strain that lacked exporters for Zn2+/Cd2+/Pb2+ could detect up to 45-fold lower metal concentrations than its wild type counterpart due to the accumulation of metals in the cell. The broad specificity issue of bioreporters was overcome by using Zn-specific promoter as a sensor element, thus achieving Zn-specific bioreporter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the studies was to improve the diagnostic capability of electrocardiography (ECG) in detecting myocardial ischemic injury with a future goal of an automatic screening and monitoring method for ischemic heart disease. The method of choice was body surface potential mapping (BSPM), containing numerous leads, with intention to find the optimal recording sites and optimal ECG variables for ischemia and myocardial infarction (MI) diagnostics. The studies included 144 patients with prior MI, 79 patients with evolving ischemia, 42 patients with left ventricular hypertrophy (LVH), and 84 healthy controls. Study I examined the depolarization wave in prior MI with respect to MI location. Studies II-V examined the depolarization and repolarization waves in prior MI detection with respect to the Minnesota code, Q-wave status, and study V also with respect to MI location. In study VI the depolarization and repolarization variables were examined in 79 patients in the face of evolving myocardial ischemia and ischemic injury. When analyzed from a single lead at any recording site the results revealed superiority of the repolarization variables over the depolarization variables and over the conventional 12-lead ECG methods, both in the detection of prior MI and evolving ischemic injury. The QT integral, covering both depolarization and repolarization, appeared indifferent to the Q-wave status, the time elapsed from MI, or the MI or ischemia location. In the face of evolving ischemic injury the performance of the QT integral was not hampered even by underlying LVH. The examined depolarization and repolarization variables were effective when recorded in a single site, in contrast to the conventional 12-lead ECG criteria. The inverse spatial correlation of the depolarization and depolarization waves in myocardial ischemia and injury could be reduced into the QT integral variable recorded in a single site on the left flank. In conclusion, the QT integral variable, detectable in a single lead, with optimal recording site on the left flank, was able to detect prior MI and evolving ischemic injury more effectively than the conventional ECG markers. The QT integral, in a single-lead or a small number of leads, offers potential for automated screening of ischemic heart disease, acute ischemia monitoring and therapeutic decision-guiding as well as risk stratification.